近幾十年來,機器視覺因其非接觸、速度快、精度高、現場抗干擾能力強等突出優點,使機器視覺技術在農業、工業、醫學等領域得到了廣泛應用。只要是需要對物體進行識別、特征判斷和檢測,機器視覺就可以大展拳腳,將任務完成得又快又好。
比如在農業生產中,有一部分工作是對農作物或農產品的外觀進行判斷,如水果品質檢測、果實成熟度判別、作物生長狀況以及雜草的識別等。這些過去主要依靠人的視覺進行辨別和判斷的工作可以由機器視覺技術部分或全部替代,從而實現農業自動化和智能化。例如,來自南京林業大學的黃秀玲團隊就設計了一條可以對蘋果品質進行動態、實時檢測的智能化分級生產線。生產線上,均勻分布的3個攝像頭一次性采集蘋果表面信息,通過計算機智能控制系統對采集信息進行綜合分析,從而對蘋果進行分級。不過,也有專家表示,由于農田環境的復雜多變性以及非結構化特性,目前機器視覺在農業生產中的應用尚不成熟,仍需進一步完善。
在工業環境中,機器視覺應用日臻成熟,在提高工業生產靈活性和自動化程度方面發揮重大作用。此外,在危險工作環境或人工視覺難以滿足要求的場合,用機器視覺來替代人工視覺也提高了作業的安全性。在流水線上通過圖像識別技術檢查產品外觀缺損、標簽印刷錯誤、電路板焊接質量缺陷的圖像識別系統就是機器視覺系統應用于工業領域的成功范例。印刷包裝、汽車工業、半導體材料、食品生產等,都是機器視覺在工業領域的應用方向。
在勘探采集、有色冶煉等過程中,機器視覺技術也大有可為。選礦是礦產資源加工中的一個重要環節,選礦水平高低直接影響礦物資源回收。近年來,基于機器視覺的礦物表面特征監測技術已引起工業發達國家科研機構的高度關注。資料顯示,歐盟聯合多家大學和企業,于2000年啟動了“基于機器視覺的氣泡結構和顏色表征”項目;南非、智利等國家也將機器視覺應用到石墨、鉑金屬的浮選監控中。在國內,對煤和鎳的浮選監控研究也取得了重大進展。
機器視覺技術還可以應用于智能交通、安全防范、醫療設備等方面。在醫學領域,機器視覺可以輔助醫生進行醫學影像的分析,比如X射線透視圖、核磁共振圖像、CT圖像等。在科學研究領域,可以利用機器視覺進行材料分析、生物分析、化學分析和生命科學分析,如血液細胞自動分類計數、染色體分析、癌癥細胞識別等。
隨著信息技術的發展,為計算機、機器人或其他智能機器賦予人類視覺功能,成為科學家們的奮斗目標。目前,機器視覺技術已經實現了產品化、實用化,鏡頭、高速相機、光源、圖像軟件、圖像采集卡、視覺處理器等相關產品功能日益完善。